Abstract.Casimir friction between a polarizable particle and a semi-infinite space is a delicate physical phenomenon, as it concerns the interaction between a microscopic quantum particle and a semi-infinite reservoir. Not unexpectedly, results obtained in the past about the friction force obtained via different routes are sometimes, at least apparently, wildly different from each other. Recently, we considered the Casimir friction force for two dielectric semi-infinite plates moving parallel to each other [J. S. Høye and I. Brevik, Eur. Phys. J. D 68, 61 (2014)], and managed to get essential agreement with results obtained by Pendry (1997), Volokitin and Persson (2007), and Barton (2011). Our method was based upon use of the Kubo formalism. In the present paper we focus on the interaction between a polarizable particle and a dielectric half-space again, and calculate the friction force using the same basic method as before. The new ingredient in the present analysis is that we take into account radiative damping, and derive the modifications thereof. Some comparisons are also made with works from others. Essential agreement with the results of Intravaia, Behunin, and Dalvit can also be achieved using the modification of the atomic polarizability by the metallic plate.