2015
DOI: 10.1016/j.cplett.2015.05.035
|View full text |Cite
|
Sign up to set email alerts
|

Quantum revivals of Morse oscillators and Farey-Ford geometry

Abstract: Analytical eigensolutions for Morse oscillators are used to investigate quantum resonance and revivals and show how Morse anharmonicity affects revival times. A minimum semi-classical Morse revival time T min−rev found by Heller is related to a complete quantum revival time T rev using a quantum deviation δ N parameter that in turn relates T rev to the maximum quantum beat period T max−beat . Also, number theory of Farey and Thales-circle geometry of Ford is shown to elegantly analyze and display fractional re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 27 publications
0
4
0
1
Order By: Relevance
“…The distinguish of rational and irrational times (in the units of T ) in the semiclassical limit reveals the relation of quantum mechanics to number-theoretic issues discovered in some other models [19,27,36].…”
Section: Rational and Irrational Timesmentioning
confidence: 85%
See 2 more Smart Citations
“…The distinguish of rational and irrational times (in the units of T ) in the semiclassical limit reveals the relation of quantum mechanics to number-theoretic issues discovered in some other models [19,27,36].…”
Section: Rational and Irrational Timesmentioning
confidence: 85%
“…An interesting problem would be the calculation of semiclassical measures for more general potentials, for example, the Morse potential, as well as various multi-dimensional bounded domains and compact manifolds. Coherent states for the Morse potential were constructed in [5], the structure of revivals was studied in [36,55]. One can also consider quantum optimal control problems (with both coherent and incoherent controls [46,47]) in semiclassical long-time limit.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…It is also often given in textbooks and monographs [2][3][4][5][6][7]. Sometimes the authors give both options, mentioning their equivalence, for example in [14,15], although the expression (4) is laden with a systematic error, the nature of which requires mentioning, since it inevitably leads to two possible values of the parameter " a".…”
Section: Alternative Approximations Of the Real Electronic Termmentioning
confidence: 99%
“…Он также чаще приводится и в учебниках и монографиях [2][3][4][5][6][7]. Иногда авторы приводят оба варианта, упоминая об их эквивалентности, например в [14,15], хотя выражение (4) отягощено систематической ошибкой, природа которой заслуживает упоминания, поскольку она неизбежно ведет к двум возможным значениям параметра " a". Первая систематическая ошибка заложена в дефиниции глубины потенциальной ямы D e , которую Морз принимает равной положению последнего колебательного уровня v max , и таким образом, величина D e оказывается заниженной на величину, несколько меньшую последнего колебательного кванта.…”
Section: альтернативные аппроксимации реального электронного термаunclassified