“…While the cross‐device uniqueness of electronic device fingerprints may not be totally on par with cross‐human fingerprint uniqueness, results such as provided in Deng et al (), Hall et al (), Huang and Zheng (); Lopez Jr. et al, ; Mirowski et al, ; Rehman et al, ; Reising et al, ; Rondeau et al, ; Suski et al, ; Talbot et al, ; Zhuo et al, ) routinely demonstrate near 100% discrimination for selected scenarios and have been sufficiently promising to sustain progressive RDD over the past 10 years. Collectively, these and other related RFF works have addressed nearly all common communication signaling schemes, including Bluetooth (Hall et al, ), automation (Lopez Jr. et al, ; Talbot et al, ) and ZigBee (Rondeau et al, ) Personal Area Networks (PANs); WiFi (Huang & Zheng, ; Rehman et al, ; Suski et al, ; Zhuo et al, ) Wireless Local Area Network (WLANs), and WiMAX (Deng et al, ; Reising et al, ) Wide Area Networks (WANs), to name a few. For the references provided, the unique RFF features have been reliably extracted from various signal domains, including (a) time (Deng et al, ; Hall et al, ; Lopez Jr. et al, ; Rehman et al, ; Suski et al, ), (b) frequency (Lopez Jr. et al, ; Suski et al, ; Talbot et al, ), (c) joint time–frequency (Reising et al, ; Zhuo et al, ), and (d) constellation (Huang & Zheng, ; Rondeau et al, ).…”