The impact of random dopant fluctuation (RDF) on n-type Ge junctionless FinFETs (JLFETs) with metal-interlayer-semiconductor (MIS) source/drain (S/D) contact structure is firstly investigated via 3-D technology computer aided design (TCAD) simulations. The estimation and evaluation of standard deviations in threshold voltage (V th ), on-state current (I on ), off-state current (I off ), subthreshold swing (SS), and drain induced barrier lowering (DIBL) by different Ge nanowire doping concentrations and different heights for RDF effects are performed. The results show a decreasing trend of RDF with lower doping concentration of the device. Furthermore, the influence of MIS S/D on RDF of n-type Ge JLFET is assessed through a comparative analysis between an n-type Ge JLFETs with and without MIS S/D structure. The analysis results estimate that MIS S/D can reduce performance variation to approximately 0.0237 V for σ V th , 5.75 × 10 −5 A/um for σ I on , 4.30 × 10 −10 A/um for σ I off , 0.548 mV/dec for σ SS, and 12.3 mV/V for DIBL, without severe performance degradation of the current nominal values. This estimation gives a significant insight on variability prediction of the 7 nm n-type Ge JLFET device with MIS S/D structure.