The efficient preparation of monoadducts of [60]fullerene and seven anthracenes (anthracene, 1-methylanthracene, 2-methylanthracene, 9-methylanthracene, 9,10-dimethylanthracene, 2,3,6,7-tetramethylanthracene, and 2,6-di-tert-butylanthracene) by cycloaddition in solution is described. The seven mono-adducts of [60]fullerene and the anthracenes were characterized spectroscopically and were obtained in good yields as crystalline solids. The monoadducts of [60]fullerene and anthracene, 1-methylanthracene, 2-methylanthracene and 9,10-dimethylanthracene crystallized directly from the reaction mixture. The thermolytic decomposition at 180 degrees C of the crystalline monoadducts of [60]fullerene and anthracene, 1-methylanthracene, 9-methylanthracene and 9,10-dimethylanthracene all gave rise to the specific formation of a roughly 1:1 mixture of [60]fullerene and the corresponding antipodal bisadducts ("trans-1"-bisadducts) of [60]fullerene and the anthracenes. In contrast, the crystalline monoadducts of [60]fullerene and the anthracene derivatives 2-methylanthracene, 2,3,6,7-tetramethylanthracene and 2,6-di-tert-butylanthracene all decomposed to [60]fullerene and anthracenes (without detectable formation of bisadducts) upon heating in the solid state to temperatures of 180 to 240 degrees C. The formation of the antipodal bisadducts from thermolytic decomposition of crystalline samples of the monoadducts was rationalized by topochemical control.