2017 IEEE International Conference on Imaging, Vision &Amp; Pattern Recognition (icIVPR) 2017
DOI: 10.1109/icivpr.2017.7890854
|View full text |Cite
|
Sign up to set email alerts
|

Real time Hand Gesture Recognition using different algorithms based on American Sign Language

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
22
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 84 publications
(25 citation statements)
references
References 3 publications
0
22
0
1
Order By: Relevance
“…In the next steps, these signals are analysed with the help of a Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) trained with Connectionist Temporal Classification (CTC). Islam et al [10] proposed a novel "K convex hull" method which is the combination of K curvature and convex hull algorithms. The "K convex hull" method developed is able to detect fingertip with high accuracy.…”
Section: Estrela Et Al (2013)mentioning
confidence: 99%
See 1 more Smart Citation
“…In the next steps, these signals are analysed with the help of a Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) trained with Connectionist Temporal Classification (CTC). Islam et al [10] proposed a novel "K convex hull" method which is the combination of K curvature and convex hull algorithms. The "K convex hull" method developed is able to detect fingertip with high accuracy.…”
Section: Estrela Et Al (2013)mentioning
confidence: 99%
“…The first one is electromagnetic gloves and sensors based detection and the other is Computer Vision based. The electromagnetic gloves and sensor based technique is very expensive and is not suitable for real life purposes [10]. On the other hand, the Computer Vision based technique can be further divided into Static Gesture Recognition and Dynamic Gesture Recognition.…”
Section: Introductionmentioning
confidence: 99%
“…Accuracy achieved by the proposed system is 97% on 24 gestures. Further ED has been also used with convex-hull for extracting features to improve accuracy and make system more reliable [44]. Several distinct features like eccentricity, fingertip finder, elongatedness, rotation and pixel segmentation are used for feature extraction.…”
Section: Cbirmentioning
confidence: 99%
“…La interacción hombre-máquina (HCI) es un campo de investigación basado en la interacción humana con computadoras o máquinas. El reconocimiento de gestos manuales (HGR) pasa a ser un subcampo de HCI que se incluye en la presente investigación, el reconocimiento de gestos de mano utilizando algoritmos que permitan representar un sistema de HGR en tiempo real está siendo trabajado por muchos investigadores a nivel mundial, se puede citar el sistema de señas americano (ASL) que utiliza conjuntamente el algoritmo de detección de aristas y el algoritmo de detección de piel para obtener mejores resultados [27], mientras que, el sistema de señas Indio (ISL) es digitalizado mediante el reconocimiento basado en los momentos Krawtchouk y dual-Hahn como la mejor opción a otros métodos recientemente propuestos [28], la aplicación desarrollada utiliza el algoritmo k-nearest neighbour algorithm (W-KNN) para lograr la clasificación y reconocimiento en tiempo real de los gestos de la mano [29] y que una vez que se realiza el lenguaje de señas frente a la cámara del dispositivo se logre su traducción tanto al español como al kichwa.…”
Section: Desarrollo Del Modelo Generalunclassified