Epidemic is a rapid and wide spread of infectious disease threatening many lives and economy damages. It is important to fore-tell the epidemic lifetime so to decide on timely and remedic actions. These measures include closing borders, schools, suspending community services and commuters. Resuming such curfews depends on the momentum of the outbreak and its rate of decay. Being able to accurately forecast the fate of an epidemic is an extremely important but difficult task. Due to limited knowledge of the novel disease, the high uncertainty involved and the complex societal-political factors that influence the widespread of the new virus, any forecast is anything but reliable. Another factor is the insufficient amount of available data. Data samples are often scarce when an epidemic just started. With only few training samples on hand, finding a forecasting model which offers forecast at the best efforts is a big challenge in machine learning. In the past, three popular methods have been proposed, they include 1) augmenting the existing little data, 2) using a panel selection to pick the best forecasting model from several models, and 3) fine-tuning the parameters of an individual forecasting model for the highest possible accuracy. In this paper, a methodology that embraces these three virtues of data mining from a small dataset is proposed. An experiment that is based on the recent coronavirus outbreak originated from Wuhan is conducted by applying this methodology. It is shown that an optimized forecasting model that is constructed from a new algorithm, namely polynomial neural network with corrective feedback (PNN+cf) is able to make a forecast that has relatively the lowest prediction error. The results showcase that the newly proposed methodology and PNN+cf are useful in generating acceptable forecast upon the critical time of disease outbreak when the samples are far from abundant.
In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal-spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min-max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic.
* Corresponding
Nowadays, blockchain is developing as a secure and trustworthy platform for secure information sharing in areas of application like banking, supply chain management, food industry, energy, the Internet, and medical services. Besides, the blockchain can be described in a decentralized manner as an immutable ledger for recording data entries. Furthermore, this new technology has been developed to interrupt a variety of data-driven fields, including the health sector. However, blockchain refers to the distributed ledger technology, which constitutes an innovation in the information recording and sharing without a trusted third party. In this paper, blockchain and Distributed Ledger-based Improved Biomedical Security system (BDL-IBS) has been proposed to enhance the privacy and data security across healthcare applications. Further, our goal is to make it possible for patients to use the data to support their care and to provide strong consent systems for sharing data among different organizations and applications, since this includes managing and accessing a high amount of medical information, and this technology can maintain data to ensure reliability. Finally, results show that new blockchain-based digital platforms allow for fast, easy, and seamless interactions between data suppliers to enhance privacy and data security, including for patients themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.