This paper describes the new multimodal SWELL knowledge work (SWELL-KW) dataset for research on stress and user modeling. The dataset was collected in an experiment, in which 25 people performed typical knowledge work (writing reports, making presentations, reading e-mail, searching for information). We manipulated their working conditions with the stressors: email interruptions and time pressure. A varied set of data was recorded: computer logging, facial expression from camera recordings, body postures from a Kinect 3D sensor and heart rate (variability) and skin conductance from body sensors. The dataset made available not only contains raw data, but also preprocessed data and extracted features. The participants' subjective experience on task load, mental effort, emotion and perceived stress was assessed with validated questionnaires as a ground truth. The resulting dataset on working behavior and affect is a valuable contribution to several research fields, such as work psychology, user modeling and context aware systems.