In this work, we perform spectroscopic studies of AlGaAs/InGaAs quantum cascade laser structures that demonstrate frequency mixing using strain-compensated active regions. Using a three-quantum well design based on diagonal transitions, we incorporate strain in the active region using single and double well configurations on various surface planes (100) and (111). We observe the influence of piezoelectric properties in molecular beam epitaxy grown structures, where the addition of indium in the GaAs matrix increases the band bending in between injector regions and demonstrates a strong dependence on process conditions that include sample preparation, deposition rates, mole fraction, and enhanced surface diffusion lengths. We produced mid-infrared structures under identical deposition conditions that differentiate the role of indium(strain) in intracavity frequency mixing and show evidence that this design can potentially be implemented using other material systems.