Five heteroleptic ruthenium(II) polypyridyl complexes [Ru(FL1)(dcbpy)(NCS)] (1), [Ru(FL2)(dcbpy)(NCS)] (2), [Ru(FL3)(dcbpy)(NCS)] (3), [Ru(FL1)(dcbpy)(NCS)] (4), and [Ru(FL5)(dcbpy)(NCS)] (5) (where FL1 = aniline dithiocarbamate, FL2 = p-anisidine dithiocarbamate, FL3 = p-toluidine dithiocarbamate, FL4 = dibenzyl dithiocarbamate, and FL5 = diphenyl dithiocarbamate, dcbpy =2, 2
′
-bipyridine-4,4
′
-dicarboxylic acid, NCS = ammonium thiocyanate) have been synthesized and characterized with melting point, FTIR, UV-Vis, photoluminescence, and NMR (1H and 13C NMR) techniques, while the electrochemical activities of the complexes were studied using cyclic voltammetry. The FTIR of the heteroleptic complexes showed successful coordination of the ligands to ruthenium(II) ion, while the UV-Vis confirmed six coordinate octahedral geometry of the complexes, and the photoluminescence gave the photophysical properties with high intensities indicating potentials for dye sensitization. The electrochemical activities of the ruthenium(II) complexes showed redox potentials which could enhance the dye-sensitizing abilities.