Although the efficiency of cloning remains very low, this technique has become the most reliable way to produce transgenic pigs. However, the high rate of abnormal offspring such as an enlarged tongue lowers the cloning efficiency by reducing the early survivability of piglets. Thus, the present study was conducted to identify the characteristics of the enlarged tongue from cloned piglets by histologic and transcriptomic analysis. As a result, it was observed that the tissues from enlarged tongues (n = 3) showed isolated and broken muscle bundles with wide spaces while the tissues from normal tongues (n = 3) showed the tight connection of muscle bundles without space by histological analysis. Additionally, transmission electron microscopy results also showed the formation of isolated and broken muscle bundles in enlarged tongues. The transcriptome analysis showed a total of 197 upregulated and 139 downregulated genes with more than 2-fold changes in enlarged tongues. Moreover, there was clear evidence for the difference between groups in the muscle system process with high relation in the biological process by gene ontology analysis. The analysis of the Kyoto Encyclopedia of Gene and Genomes pathway of differentially expressed genes indicated that the pentose phosphate pathway, glycolysis/gluconeogenesis, and glucagon signaling pathway were also involved. Conclusively, our results could suggest that the abnormal glycolytic regulation may result in the formation of an enlarged tongue. These findings might have the potential to understand the underlying mechanisms, abnormal development, and disease diagnosis in cloned pigs.