We are exploring low-dose proton radiography and computed tomography (pCT) as
techniques to improve the accuracy of proton treatment planning and to provide
artifact-free images for verification and adaptive therapy at the time of
treatment. Here we report on comprehensive beam test results with our prototype
pCT head scanner. The detector system and data acquisition attain a sustained
rate of more than a million protons individually measured per second, allowing
a full CT scan to be completed in six minutes or less of beam time. In order to
assess the performance of the scanner for proton radiography as well as
computed tomography, we have performed numerous scans of phantoms at the
Northwestern Medicine Chicago Proton Center including a custom phantom designed
to assess the spatial resolution, a phantom to assess the measurement of
relative stopping power, and a dosimetry phantom. Some images, performance, and
dosimetry results from those phantom scans are presented together with a
description of the instrument, the data acquisition system, and the calibration
methods.Comment: Conference on the Application of Accelerators in Research and
Industry, CAARI 2016, 30 October to 4 November 2016, Ft. Worth, TX, US