2016
DOI: 10.46661/revmetodoscuanteconempresa.2218
|View full text |Cite
|
Sign up to set email alerts
|

Redes neuronales artificiales para la predicción de precios inmobiliarios

Abstract: Los modelos econométricos en la valoración de precios inmobiliarios constituyen una herramienta útil tanto para los compradores como para las autoridades locales y fiscales. Desde los modelos hedónicos clásicos hasta los planteamientos actuales a través de redes neuronales artificiales (RNA), han tenido lugar numerosas aportaciones en la literatura económica que tratan de comparar los resultados de ambos métodos. Insistimos en el empleo de RNA en el caso de disponer de suficiente información estadística. En es… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 5 publications
0
5
0
Order By: Relevance
“…The actual address of each property used in this study could not be retrieved from the real estate firms. This is not uncommon in the literature (for instance Selim, 2009;Kontrimas & Verikas, 2011;Tabales et al, 2013). (1)…”
Section: The Datamentioning
confidence: 97%
“…The actual address of each property used in this study could not be retrieved from the real estate firms. This is not uncommon in the literature (for instance Selim, 2009;Kontrimas & Verikas, 2011;Tabales et al, 2013). (1)…”
Section: The Datamentioning
confidence: 97%
“…the location, number of stories, lot size, house type, exterior composition, house age, number of baths and number of units) for valuations of properties (Peterson and Flanagan, 2009; Selim, 2009; Wu et al , 2009; Igbinosa, 2011; Morano and Tajani, 2013; Chiarazzo et al , 2014; Morano et al , 2015; Rafiei and Adeli, 2016; Abidoye and Chan, 2017, 2018; Kang et al , 2020; Ho et al , 2021; Xu and Li, 2021), from different macroeconomic variables (e.g. the unemployment rate, default rate, stock market index, gross national product, interest rate, consumer price index and gross domestic product) for valuations (Rafiei and Adeli, 2016; Kang et al , 2020), from housing prices themselves for technical forecasts (Xin et al , 2004; Li et al , 2009; Xiaolong and Ming, 2010; Gu et al , 2011; Wang et al , 2014; Ma et al , 2015; Ge et al , 2019; Li et al , 2020; Liu and Wu, 2020), from house characteristics for technical forecasts (Nghiep and Al, 2001; Limsombunchai, 2004; Khalafallah, 2008; Lam et al , 2008; Igbinosa, 2011; Tabales et al , 2013; Morano and Tajani, 2013; Park and Bae, 2015; Sarip et al , 2016; Chen et al , 2017; Kitapci et al , 2017; Fu, 2018; Yu et al , 2018; Li et al , 2018; Rahman et al , 2019; Liu and Liu, 2019; Piao et al , 2019; Ge et al , 2019; Shahhosseini et al , 2019; Huang, 2019; Yan and Zong, 2020; Pai and Wang, 2020; Kang et al , 2020; Rico-Juan and de La Paz, 2021; Embaye et al , 2021; Terregrossa and Ibadi, 2021; Yasnitsky et al , 2021) and from macroeconomic variables for technical forecasts (Wilson et al , 2002; Xin et al , 2004; Khalafallah, 2008; Lam et al , 2008; Li et al , 2009; Tabales et al , 2013; Azadeh et al , 2014; Plakandaras et al , 2015; …”
Section: Literature Reviewmentioning
confidence: 99%
“…Some previous research focuses on one specific machine learning model to forecast housing prices (Wilson et al , 2002; Xin et al , 2004; Lam et al , 2008; Khalafallah, 2008; Xiaolong and Ming, 2010; Igbinosa, 2011; Gu et al , 2011; Azadeh et al , 2014; Wang et al , 2014; Chiarazzo et al , 2014; Ma et al , 2015; Morano et al , 2015; Rafiei and Adeli, 2016; Wang et al , 2016; Kitapci et al , 2017; Chen et al , 2017; Abidoye and Chan, 2017; Ćetković et al , 2018; Li et al , 2018; Piao et al , 2019; Shahhosseini et al , 2019; Rahman et al , 2019; Li et al , 2020; Kang et al , 2020; Yasnitsky et al , 2021), some on comparisons of different machine learning models (Li et al , 2009; Wu et al , 2009; Park and Bae, 2015; Sarip et al , 2016; Li et al , 2017; Fu, 2018; Yu et al , 2018; Liu and Liu, 2019; Ge et al , 2019; Huang, 2019; Pai and Wang, 2020; Yan and Zong, 2020; Ho et al , 2021; Rico-Juan and de La Paz, 2021; Xu and Li, 2021; Embaye et al , 2021), some on comparisons between machine learning models and traditional econometric models (Nghiep and Al, 2001; Limsombunchai, 2004; Selim, 2009; Peterson and Flanagan, 2009; Tabales et al , 2013; Morano and Tajani, 2013; Plakandaras et al , 2015; Lim et al , 2016; Li et al , 2017; Abidoye and Chan, 2018; Yu et al , 2018; Ge et al , 2019; Liu and Wu, 2020; Milunovich, 2020) and some on model combinations (Taffese, 2007; Wei and Cao, 2017; Terregrossa and Ibadi, 2021). More specifically, for research focusing on one particular machine learning model, our reviews here suggest that the NN (Wilson et al , 2002; Xin et al , 2004; Lam et al , 2008; …”
Section: Literature Reviewmentioning
confidence: 99%
See 2 more Smart Citations