Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recently developed Long (≥100 cm) axial field of view (AFOV) PET/CT scanners are capable of producing images with higher signal‐to‐noise ratio, or performing faster whole‐body acquisitions, or scanning with lower radiation dose to the patient, compared with conventional PET/CT scanners. These benefits, which arise due to their substantially higher, by more than an order of magnitude, geometric efficiency, have been well described in the recent literature. The introduction of Long AFOV PET/CT technology into the clinic also has important implications for the design and workflow of PET/CT facilities and their effects on radiation exposure to staff and patients. Maximising the considerable benefits of this technology requires a thorough understanding of the relationships between these factors to optimise workflows while appropriately managing radiation exposure. This article reviews current knowledge on PET/CT facility design, workflows and their effects on radiation exposure, identifies gaps in the literature and discusses the challenges that need to be considered with the introduction of Long AFOV PET/CT into the clinic.
Recently developed Long (≥100 cm) axial field of view (AFOV) PET/CT scanners are capable of producing images with higher signal‐to‐noise ratio, or performing faster whole‐body acquisitions, or scanning with lower radiation dose to the patient, compared with conventional PET/CT scanners. These benefits, which arise due to their substantially higher, by more than an order of magnitude, geometric efficiency, have been well described in the recent literature. The introduction of Long AFOV PET/CT technology into the clinic also has important implications for the design and workflow of PET/CT facilities and their effects on radiation exposure to staff and patients. Maximising the considerable benefits of this technology requires a thorough understanding of the relationships between these factors to optimise workflows while appropriately managing radiation exposure. This article reviews current knowledge on PET/CT facility design, workflows and their effects on radiation exposure, identifies gaps in the literature and discusses the challenges that need to be considered with the introduction of Long AFOV PET/CT into the clinic.
Designing novel systems for efficient cancer treatment and improving the quality of life for patients is a prime requirement in the healthcare sector. In this regard, theranostics have recently emerged as a unique platform, which combines the benefits of both diagnosis and therapeutics delivery. Theranostics have the desired contrast agent and the drugs combined in a single carrier, thus providing the opportunity for real-time imaging to monitor the therapy results. This helps in reducing the hazards related to treatment overdose or underdose and gives the possibility of personalized therapy. Polysaccharides, as natural biomolecules, have been widely explored to develop theranostics, as they act as a matrix for simultaneously loading both contrast agents and drugs for their utility in drug delivery and imaging. Additionally, their remarkable physicochemical attributes (biodegradability, satisfactory safety profile, abundance, and diversity in functionality and charge) can be tuned via postmodification, which offers numerous possibilities to develop theranostics with desired characteristics. Hence, we provide an overview of recent advances in polysaccharide matrix-based theranostics for drug delivery combined with magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computed tomography, and ultrasound imaging. Herein, we also summarize the toxicity assessment of polysaccharides, associated contrast agents, and nanotoxicity along with the challenges and future research directions.
18F fluorodeoxyglucose (FDG) is widely used for PET CT examinations; however, positron-emitting florin generates relatively high gamma radiation (511 keV) raising occupational as well as public safety concerns. This study aimed to measure the rate of radiation emitted from patients that underwent 18FDG PET/CT examination for oncological conditions, approximately 2 hours after the procedure, before and after urination. A total of 100 patients who underwent 18F-FDG PET/CT examination were included in this study. Following imaging, external radiation exposure rate was measured using proportional counter probe at 1-m distance, approximately 2 hours after the completion of imaging procedure, before and after urination. Factors effecting resulting exposure from patients were examined. The mean post-urination activity ranged between 0.2 and 6.3 μSv/h (median, 1.8 μSv/h). Presence of metastasis, tumor type and gender did not have any effect on mean post-urination activity (P>0.05 for all comparisons). Older age, greater BMI and higher administered dose were associated with higher post-urination activity (P < 0.05 for all comparisons). Findings of this study showed that 2 hours after radionuclide injection, activity rate from patients is far below the recommended limits for general population and further decreases after urination. Discharging patients at 2 hours after urination would not seem to pose radiation health risk for relatives, public or other hospital staff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.