Corneal thickness (CT) maps of the central (2-mm diameter), para-central (2 to 5-mm diameter), peripheral (5 to 6-mm diameter), and minimum (5-mm diameter) cornea were measured in normal Chinese school children aged 7 to 15 years old using Fourier-domain optical coherence tomography. Multiple regression analyses were performed to explore the effect of associated factors [age, gender, refraction, axial length and corneal curvature radius (CCR)] on CT and the relationship between central corneal thickness (CCT) and intraocular pressure (IOP). A total of 1228 eyes from 614 children were analyzed. The average CCT was 532.96 ± 28.33 μm for right eyes and 532.70 ±28.45 μm for left eyes. With a 10 μm increase in CCT, the IOP was elevated by 0.37 mm Hg, as measured by noncontact tonometry. The CT increased gradually from the center to the periphery. The superior and superior nasal regions had the thickest CTs, while the thinnest points were primarily located in the inferior temporal cornea. The CCT was associated with CCR (p = 0.008) but not with gender (p = 0.075), age (p = 0.286), axial length (p = 0.405), or refraction (p = 0.985). In the para-central region and the peripheral cornea, increased CT was associated with younger age, male gender, and a flatter cornea.