Registration of histological slices to volumetric imaging of the prostate is an important task that can be used to optimize imaging for cancer detection. Such registration is challenging due to physical changes of the specimen during excision and fixation, and misalignment of the histological slices during preparation and digital scanning. In this work, we consider a multi-slice to volume registration method in which a stack of sparse, unaligned 2-D whole-mount histological slices is registered to a 3-D volumetric imaging of the prostate. We propose a particle filtering framework to contend with the high dimensionality of the search space and multimodal nature of the optimization. Such framework allows modeling of the uncertainty in the pose of the slices and in the imaged information, in order to derive optimal registration parameters in a Bayesian approach. Intensity-, region-, and point-based similarity metrics were incorporated into the registration algorithm to account for different imaging modalities. We demonstrate and evaluate our method on a diverse set of data that includes a synthetic volume, ex vivo and in vivo magnetic resonance imaging, and in vivo ultrasound.