Stk11, commonly known as Lkb1, is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoDCre/Lkb1flox/flox mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7CreER mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in non-injured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMPK/mTOR pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development and regeneration.