The mechanisms that integrate genetic and environmental information to coordinate the expression of complex phenotypes are little understood. We investigated the role of two protein kinases (PKs) in the population density-dependent transition to gregarious behavior that underlies swarm formation in desert locusts: the foraging gene product, a cGMP-dependent PK (PKG) implicated in switching between alternative group-related behaviors in several animal species; and cAMP-dependent PK (PKA), a signal transduction protein with a preeminent role in different forms of learning. Solitarious locusts acquire key behavioral characters of the swarming gregarious phase within just 1 to 4 h of forced crowding. Injecting the PKA inhibitor KT5720 before crowding prevented this transition, whereas injecting KT5823, an inhibitor of PKG, did not. Neither drug altered the behavior of long-term gregarious locusts. RNAi against foraging effectively reduced its expression in the central nervous system, but this did not prevent gregarization upon crowding. By contrast, solitarious locusts with an RNAi-induced reduction in PKA catalytic subunit C1 expression behaved less gregariously after crowding, and RNAi against the inhibitory R1 subunit promoted more extensive gregarization following a brief crowding period. A central role of PKA is congruent with the recent discovery that serotonin mediates gregarization in locusts and with findings in vertebrates that similarly implicate PKA in the capacity to cope with adverse life events. Our results show that PKA has been coopted into effecting the wide-ranging transformation from solitarious to gregarious behavior, with PKAmediated behavioral plasticity resulting in an environmentally driven reorganization of a complex phenotype.phase change | phenotypic plasticity | Schistocerca gregaria H ow genetic information is integrated with environmental cues to control and coordinate complex phenotypes is a fundamental question in biology (1, 2). Environmental input can cause concerted changes in multiple traits to produce distinct phenotypic syndromes that are adaptive in particular conditions. Phase polyphenism in desert locusts (Schistocerca gregaria) is an extreme example. Locusts can reversibly transform between a solitarious phase and a gregarious phase that differ profoundly in morphology, physiology, and behavior (3-5). Solitarious locusts occur at low population densities and actively avoid conspecifics; they are cryptic in appearance and behavior; walk with a slow, creeping gait; and have restricted dietary preferences. The gregarious phase is characterized by increased activity and locomotion, an upright posture and gait, aposematic coloration, a broad dietary range, and, most critically, attraction to other locusts. Phase change is driven by huge changes in population density and is an adaptation to arid habitats where rains are infrequent and erratic. Transitory periods of verdure support rapid population growth, but after the rains cease, large numbers of solitarious locusts compete for...