Laser-assisted micromilling is a promising micromachining process for difficult-to-cut materials. Laser-assisted micromilling uses a laser to thermally soften the workpiece in front of the cutting tool, thereby lowering the cutting forces, improving the dimensional accuracy, and reducing the tool wear. Thermal softening, however, causes the workpiece material to adhere to the tool and form a built-up edge. To mitigate this problem and to enhance micromachinability of the workpiece in laser-assisted micromilling, this article investigates the following lubrication and cooling methods: (1) minimum quantity lubrication and (2) vortex tube cooling. Experiments utilizing the two methods are carried out on a difficult-to-cut stainless steel (A286), and the surface morphology, tool condition, burr formation, groove dimensional accuracy, surface finish, and cutting forces are analyzed. Results show that the combination of laser-assisted micromilling and minimum quantity lubrication yields the least amount of tool wear, lower resultant force, better groove dimensional accuracy, and no built-up edge. While vortex tube cooling with laser-assisted micromilling produces smaller burrs compared to minimum quantity lubrication, it yields larger changes in groove dimensions and is characterized by built-up edge formation. Possible physical explanations for the experimental observations are given.