Ferroelectric random access memory (FeRAM) based on conventional ferroelectric perovskites, such as Pb(Zr,Ti)O 3 and SrBi 2 Ta 2 O 9 , has encountered bottlenecks on memory density and cost, because those conventional perovskites suffer from various issues mainly including poor complementary metal-oxide-semiconductor (CMOS)-compatibility and limited scalability. Nextgeneration cost-efficient, high-density FeRAM shall therefore rely on a material revolution. Since the discovery of ferroelectricity in Si:HfO 2 thin films in 2011, HfO 2 -based materials have aroused widespread interest in the field of FeRAM, because they are CMOScompatible and can exhibit robust ferroelectricity even when the film thickness is scaled down to below 10 nm. A review on this new class of ferroelectric materials is therefore of great interest. In this paper, the most appealing topics about ferroelectric HfO 2 -based materials including origins of ferroelectricity, advantageous material properties, and current and potential applications in FeRAM, are briefly reviewed.