The increased fractional clearance of albumin in nephrotic states has long been attributed to glomerular permselectivity dysfunction. Using radiolabeled rat serum albumin, transferrin, IgG, and polydisperse Ficoll, this study investigated the changes in their in vivo fractional clearance in puromycin aminonucleoside nephrosis and anti-glomerular basement membrane glomerulonephritis. In control rats the lack of charge selectivity was confirmed by the demonstration that carboxymethyl Ficoll (valence ϳ؊39) had the same fractional clearance as uncharged Ficoll. Both diseases exhibited similar effects on fractional clearance measurements suggesting an underlying common mechanism. In disease, there was good agreement between the fractional clearance of proteins determined by radioactivity as compared to those determined by radioimmunoassay. A small increase in the fractional clearance for IgG was evident in disease as compared to controls, which mirrored the change in the equivalent size Ficoll, suggesting that the increase is because of the development of a small proportion of large pores in the glomerular capillary wall. There was no increase, however, in the fractional clearance of Ficoll of equivalent size to albumin in either disease, yet the fractional clearance of the albumin increased by 12 to 14 times as determined by radioactivity and 4500 to 6600 times as determined by radioimmunoassay. This study demonstrates that glomerulonephritis is not a disease associated with changes in glomerular permeability to albumin but is because of alterations in albumin processing by cells distal to the glomerular basement membrane. It is also apparent that approaches to glomerular pathology and proteinuria as risk factors in renal disease must be reassessed. (Am J Pathol 2001, 159:1159 -1170)