Abstract:In sub-Saharan Africa, the high demand for wood-based cooking fuels calls for urgent policy action to steer the cooking energy sector towards more sustainability. While the subnational scale is growing in importance for policy planning, current energy assessments still only consider individual entities without taking into account resource flows. Ignoring flows of biomass cooking fuels in supply-demand assessments is a system boundary problem that can lead to misleading policy recommendations. In this paper, we tackle the boundary problem in subnational supply-demand assessments and provide a tool to support knowledge-based decision-making on the management of biomass cooking fuels in sub-Saharan Africa. Using Kitui County as a case study, we developed and tested an approach consisting of a supply model, local demand model, balance model, availability model, and adjusted balance model. The balance model only considers local fuel supplies and demand, whereas the adjusted balance model also considers external demand, which reduces the locally available supply of fuel. The results show that fuel demand and supply are spatially heterogeneous and vary between wood-based and non-woody fuels, and that the transport distance of fuels strongly affects local fuel availability and determines whether the supply-demand balance is positive or negative. We conclude that subnational energy policies should consider geographical distribution of supply and demand, aim to increase the fuel mix, consider external demand in supply-demand assessments, and differentiate between fuels for self-consumption and the market.