2011
DOI: 10.1142/s1793042111004915
|View full text |Cite
|
Sign up to set email alerts
|

Representations of Arithmetic Progressions by Positive Definite Quadratic Forms

Abstract: For a positive integer d and a non-negative integer a, let Sd,a be the set of all integers of the form dn + a for any non-negative integer n. A (positive definite integral) quadratic form f is said to be Sd,a-universal if it represents all integers in the set Sd, a, and is said to be Sd,a-regular if it represents all integers in the non-empty set Sd,a ∩ Q((f)), where Q(gen(f)) is the set of all integers that are represented by the genus of f. In this paper, we prove that there is a polynomial U(x,y) ∈ ℚ[x,y] (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2011
2011
2022
2022

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 16 publications
0
2
0
Order By: Relevance
“…(a, b, c) = (1, 1, 1), (1,1,2), (1,1,4), (1,2,1), (1,2,2), (1,2,3), (1,2,4), (2,2,1), (2,4,1), (2,5,1), (1,3,1), (1,4,1), (1,4,2), (1,6,1), (1,8,1), and the ternary sum ap 3 (x)+bp 4 (y)+cp 4 (z) is universal if and only if (a, b, c) is one of the following triples:…”
Section: Introductionmentioning
confidence: 99%
“…(a, b, c) = (1, 1, 1), (1,1,2), (1,1,4), (1,2,1), (1,2,2), (1,2,3), (1,2,4), (2,2,1), (2,4,1), (2,5,1), (1,3,1), (1,4,1), (1,4,2), (1,6,1), (1,8,1), and the ternary sum ap 3 (x)+bp 4 (y)+cp 4 (z) is universal if and only if (a, b, c) is one of the following triples:…”
Section: Introductionmentioning
confidence: 99%
“…In [13], the notion of S d,a -regularity is introduced. A positive definite integral quadratic form f is called S d,a -regular if the following two conditions hold;…”
Section: Introductionmentioning
confidence: 99%