The fast tool servo (FTS) control strategy is the control core of high-speed noncircular turning. This method should ensure high-speed and precision positioning and have the corresponding anti-interference ability in the micro-stroke motion with dynamic changes of tool feed and load. Most of the previous FTS control studies used the repetitive control and speed feedforward control strategy, which achieved promising results under ideal machining conditions. However, this strategy showed some defects in the real-world complex and changeable working conditions such as time-varying cutting force, intermittent cutting and fluctuating machine spindle speed. This paper proposed and implemented a compound proportional integral derivative control strategy based on input feedforward and dynamic compensation in noncircular turning. This technique successfully met the motion requirements of the high responsiveness of micro-stroke in noncircular turning and overcame disturbances from complex time variations of the cutting force, intermittent cutting case of the product and fluctuations of machine spindle speed. According to the findings, the machining tracking error was less than ±2 µm. Experimental results demonstrated the excellent tracking performance and machining effect of this control strategy.