Stock is an investment in the capital market that is very promising for investors. Investors can also get high returns from the shares invested. However, this stock price is not always stable, it can go up and down drastically. The purpose of this study is to predict stock prices because they often experience instability. The method used in this research is using the Exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model with the Quasi Maximum Likelihood (QML) method. The result of this research is the implementation of this model. The EGARCH model used is the stock price index model that is formed, namely the autoregressive integrated moving average (ARIMA) (0, 1, 2) EGARCH (1.4). The conclusion from the results of the research that predictions using the ARIMA model (0, 1, 2) EGARCH (1, 4) is the best model in accommodating the asymmetric nature of the volatility of the stock price index. The results of this egarch model show more optimal prediction results seen from an error of 3% compared to other modes such as the arch model and the GARCH model.