Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO2) glasses and high molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable mechanical properties for orthopaedic arthroplasty applications, however for vertebroplasty and other medical luting applications these cements have working and setting times which are unsuitable for such applications. In this study GPCs based on Sr-Ca-Zn-SiO2 glasses and low molecular weight PAA were evaluated for orthopaedic luting applications. GPCs based on four different glasses; BT100 (0.16CaO, 0.36ZnO, 0.48SiO2), BT101 (0.04SrO, 0.12CaO, 0.36ZnO, 0.48SiO2), BT102 (0.08SrO 0.08CaO, 0.36ZnO, 0.48SiO2) and BT103 (0.12SrO 0.04CaO, 0.36ZnO, 0.48SiO2) and two PAAs (MW; 12,700 and 25,700) were examined. These cement formulations exhibited handling properties potentially suitable for luting applications as well as mechanical strengths which were similar to those of trabecular bone. Upon immersion in simulated body fluid, the GPCs showed sustained growth of a calcium phosphate layer on the surface of the cement indicating that these cements were bioactive in nature.