The resistivity scaling of metals is a crucial factor for further downscaling of interconnects in nanoelectronic devices that affects signal delay, heat production, and energy consumption. Here, we present a screening method for metals with highly anisotropic band structures near the Fermi level with the aim to select promising materials in terms of their electronic transport properties and their resistivity scaling at the nanoscale. For this, we consider a temperature-dependent transport tensor, based on band structures obtained from first principles. This transport tensor allows for a straightforward comparison between different anisotropic metals in nanostructures with different lattice orientations. By evaluating the temperature dependence of the tensor components, we also find strong deviations from the zero-temperature transport properties at standard operating temperature conditions around room temperature.