2018
DOI: 10.1103/physrevmaterials.2.033801
|View full text |Cite
|
Sign up to set email alerts
|

Resistivity scaling model for metals with conduction band anisotropy

Abstract: It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In this work, we derive a resistivity scaling model that captures g… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 12 publications
(7 citation statements)
references
References 40 publications
0
5
0
2
Order By: Relevance
“…𝜏 𝑛 (𝒌) = 𝜏. This assumption is preferred in cases when the resistivity is limited by phonon scattering [41]. By contrast, an assumption of isotropic  is more appropriate when the scattering is due to randomly distributed point defects.…”
Section: Methodsmentioning
confidence: 99%
“…𝜏 𝑛 (𝒌) = 𝜏. This assumption is preferred in cases when the resistivity is limited by phonon scattering [41]. By contrast, an assumption of isotropic  is more appropriate when the scattering is due to randomly distributed point defects.…”
Section: Methodsmentioning
confidence: 99%
“…One approach is to describe the band structure anisotropy with an anisotropic effective mass tensor, for which a generalization of the Mayadas-Shatzkes model can be obtained analytically, as presented in Ref. [36]. Another approach is presented in Ref.…”
Section: Discussionmentioning
confidence: 99%
“…Therefore, the usefulness of the ρλ product as a figure-of-merit can be questioned, as it does not capture the anisotropy of the charge carriers in the conduction band(s). While there are strong indications that band structure anisotropy should not be neglected [33,34], the impact of band structure anisotropy on the resistivity scaling has received rather little attention so far [14,27,35,36].…”
mentioning
confidence: 99%
“…Выведем из уравнения Лиувилля (3) уравнение, аналогичное кинетическому уравнению Больцмана. Если представить гамильтонианĤ как сумму собственного гамильтонианаĤ 0 и зависящего от времени потенциала V (t), индуцирующего переходы между собственными состояниями, то уравнение для матричных элементов оператора плотности ρ n ′ n принимает вид [23] i 10), запишем уравнение для диагональных элементов матрицы плотности f n = ρ nn :…”
Section: вывод кинетического уравненияunclassified
“…В полупроводниковых пленках наблюдается резкое увеличение сопротивления при малых толщинах [4][5][6]. Имеется значительное количество теоретических работ, в которых для решения задач об электропроводности тонких пленок и проволок использовался стандартный кинетический метод [7][8][9][10][11][12][13]. Однако данный метод неприменим, когда толщина пленки или радиус проволоки сравнимы или меньше длины волны де Бройля носителя заряда.…”
Section: Introductionunclassified