2000
DOI: 10.1002/1097-0312(200010)53:10<1305::aid-cpa4>3.0.co;2-#
|View full text |Cite
|
Sign up to set email alerts
|

Resonance expansions of scattered waves

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

2
58
0
1

Year Published

2001
2001
2020
2020

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 73 publications
(61 citation statements)
references
References 29 publications
2
58
0
1
Order By: Relevance
“…These in turn allow a contour deformation argument leading to an expansion of waves in terms of quasinormal modes. Such expansions have a long tradition in scattering theory going back to Lax-Phillips and Vainberg-see [45] for the strongly trapping case and for references.…”
mentioning
confidence: 71%
“…These in turn allow a contour deformation argument leading to an expansion of waves in terms of quasinormal modes. Such expansions have a long tradition in scattering theory going back to Lax-Phillips and Vainberg-see [45] for the strongly trapping case and for references.…”
mentioning
confidence: 71%
“…Notamment pour des matrices de Toeplitz, intervenant lors de discrétisations d'opérateurs différentiels, le pseudospectre semble pouvoir jouer un role important dans l'étude de la stabilité du problème d'évolution discret correspondant ( [17]). Davies ([5]) propose une approche directe des problèmes d'évolution utilisant le pseudospectre, et les travaux antérieurs de Tang-Zworski ( [14]) et de Burq-Zworski ( [2]) illustrent bien les difficultés pseudospectrales pour les problèmes d'évolution. M.Zworski observe aussi que lors du calcul numérique des valeurs propres de certains opérateurs différentiels dans le cadre semiclassique, il semble y avoir un phénomène de migration des valeurs propres vers le bord du pseudospectre, dans la limite semiclassique( [20]).…”
Section: Introductionunclassified
“…Poles of the meromorphically continued Green's function are called resolvent resonances and physically represent "almost bound states." As with eigenvalues of the Laplacian, resolvent resonances determine the expansion in "normal modes" of solutions for the wave equation but unlike eigenvalues they represent "normal modes" whose energy in any bounded region decays with time (see, for example, [6], [33], and [37] for recent work on such "resonance wave expansions"). The energy decay is a consequence of the non-compactness of the underlying manifold.…”
Section: Resolvent Resonancesmentioning
confidence: 99%