The adsorption and growth of metals on the surfaces of other metals is an important topic for studies of heterogeneous catalysis and bimetallic nanoparticles. The surface structure of these systems impacts nanoparticle growth, catalytic activity, and reaction selectivity. In these experiments, platinum, chromium, iron, or copper were vapor deposited on the reconstructed Au(100) surface. The initial growth of each metal was studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Each of the four metals form anisotropic rectangular islands oriented in the direction of the gold reconstruction rows. The gradual lifting of the surface reconstruction by increased metal coverage is observed, and the reconstruction is fully lifted after 0.5 ML of Pt, Cr, or Fe, or by 3.3 ML of Cu. After the reconstruction is lifted, the island shape changes from rectangular to square, illustrating the effect of surface structure on growth. Second layer islands begin to form before the completion of the first full layer.