Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brainderived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca 2+ , a known modulator of differentiation, in a substrate-stiffness-dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells. (5) and that the mechanical properties of the culturing environment before transplantation can influence the outcome of in vivo stem cell transplants (6). Hence, a molecular and mechanistic understanding of how stem cells process mechanical cues and how this processing results in downstream signaling events and ultimately in fate decisions is needed for greater control over the fate of transplanted cells.Studies in mesenchymal and neural stem cells have revealed the involvement of focal adhesion zones and cytoskeletal proteins, such as integrins, nonmuscle myosin II (7), Rho GTPases (8-10), and vinculin (11), that participate in the generation of cellular traction forces. Recent work also has identified the nucleoskeletal protein lamin-A (12) and the transcriptional coactivators Yap (Yesassociated protein) and Taz (transcriptional coactivator with PDZbinding motif) (13) in mechanotransduction in mesenchymal stem cells. However, the mechanisms by which mechanical cues detected by cellular traction forces are transduced to downstream intracellular pathways of differentiation remain unclear.Ion channels are involved, directly or indirectly, in the transduction of all forms of physical stimuli-including sound, light, temperature, mechanical force, and even gravity-into intracellular signaling pathways. Hence, we wondered whether ion channels could be involved in transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification. In particular, we focused here on cationic stretch-activated channels (SACs) because they are known to detect mechanical forces with high sensitivity and broad dynamic range and because they are permeable to Ca 2+ , an important second messenger implicated in cell fate (14,15). We examined the role of SACs in neural stem cells, for which mechanical cues influence specification alo...