Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Forming a retrofit annular plug on controlled acid jet (CAJ) liners in horizontal wells can be challenging. Several conformance technologies have been tested with mixed results; optimal chemical placement is problematic, and results show that conventional treatments either slump or float along horizontal sections, fail to withstand the desired differential pressure, or are not achievable at low temperatures. This paper describes laboratory improvements and a large-scale yard test of a thixotropic polymer sealant (TPS). The TPS system is composed of an organically crosslinked polymer combined with optimized rheological modifiers, which enable predictable and controllable crosslinking times. This allows precise TPS placement into the horizontal or deviated wellbores to help control unwanted water or gas. Extensive laboratory testing was conducted on the TPS system to formulate the optimal rheology at low temperatures. A specialized laboratory-scaled test cell was purposely built to verify the development of the thixotropic blend at low temperatures of 35 to 40°C. After successful laboratory testing, a 520-ft long yard test was conducted to mimic a field trial. It consisted of centralized 4 1/2-in. tubing run horizontally inside a 7-in. casing. Four predrilled holes of 4-mm diameter were located midway along the tubing to represent the perforations, providing communication to the annulus of the tubing and casing. A 2.25-in. outer diameter (OD) high-pressure hose, representing coiled tubing, was placed inside the 4 1/2-in. tubing and used to deliver the TPS fluid to the perforations. The entire setup was pressure-tested to 5,000 psi and heated to 40°C using an insulated heating blanket. A high-pressure pump was used to pump and displace 6 bbl of TPS, which was sufficient to form a 300-ft annular plug. The chemical was allowed to crosslink and set for 45 hours. Results of this yard test showed that a 300-ft TPS annular plug is capable of withstanding up to 4,620-psi differential pressure. The setup was then cut at various locations, both treated and untreated, to confirm, assess, and observe TPS placement in the cross-section of the tubulars. It was observed that the TPS can flow in the smaller spaces between the tubing and the centralizer, helping ensure optimal sealing. The TPS system described here can be used to help reduce unwanted water or gas production in long horizontal wells with CAJ liners. The open annulus between the preperforated liner and the formation makes selective isolation for the presence of thief zones, high-permeability zones, or fractures extremely challenging. Left untreated, this can eventually result in a large increase in water production and eventually a reduction in the economic life of the field.
Forming a retrofit annular plug on controlled acid jet (CAJ) liners in horizontal wells can be challenging. Several conformance technologies have been tested with mixed results; optimal chemical placement is problematic, and results show that conventional treatments either slump or float along horizontal sections, fail to withstand the desired differential pressure, or are not achievable at low temperatures. This paper describes laboratory improvements and a large-scale yard test of a thixotropic polymer sealant (TPS). The TPS system is composed of an organically crosslinked polymer combined with optimized rheological modifiers, which enable predictable and controllable crosslinking times. This allows precise TPS placement into the horizontal or deviated wellbores to help control unwanted water or gas. Extensive laboratory testing was conducted on the TPS system to formulate the optimal rheology at low temperatures. A specialized laboratory-scaled test cell was purposely built to verify the development of the thixotropic blend at low temperatures of 35 to 40°C. After successful laboratory testing, a 520-ft long yard test was conducted to mimic a field trial. It consisted of centralized 4 1/2-in. tubing run horizontally inside a 7-in. casing. Four predrilled holes of 4-mm diameter were located midway along the tubing to represent the perforations, providing communication to the annulus of the tubing and casing. A 2.25-in. outer diameter (OD) high-pressure hose, representing coiled tubing, was placed inside the 4 1/2-in. tubing and used to deliver the TPS fluid to the perforations. The entire setup was pressure-tested to 5,000 psi and heated to 40°C using an insulated heating blanket. A high-pressure pump was used to pump and displace 6 bbl of TPS, which was sufficient to form a 300-ft annular plug. The chemical was allowed to crosslink and set for 45 hours. Results of this yard test showed that a 300-ft TPS annular plug is capable of withstanding up to 4,620-psi differential pressure. The setup was then cut at various locations, both treated and untreated, to confirm, assess, and observe TPS placement in the cross-section of the tubulars. It was observed that the TPS can flow in the smaller spaces between the tubing and the centralizer, helping ensure optimal sealing. The TPS system described here can be used to help reduce unwanted water or gas production in long horizontal wells with CAJ liners. The open annulus between the preperforated liner and the formation makes selective isolation for the presence of thief zones, high-permeability zones, or fractures extremely challenging. Left untreated, this can eventually result in a large increase in water production and eventually a reduction in the economic life of the field.
Increasing water cut and well integrity are currently major concerns, particularly in mature fields. Excessive water production can detrimentally affect the profitability of hydrocarbon-producing wells if not controlled properly. This paper describes a successful zonal isolation case study in a dual-string completion well with well integrity challenges and variable permeability intervals using a modified organically crosslinked polymer (m-OCP) and coiled tubing (CT)-assisted real-time temperature sensing for effective placement and post-operation evaluation. The m-OCP system is a combination of a thermally activated, organically crosslinked polymer and particulate material for leakoff control to help ensure shallow matrix penetration. It is acid resistant, H2S tolerant, has controlled penetration, and is easy to clean up using a rotating wash nozzle. The setting time can be accurately predicted with simple laboratory tests. These characteristics make this system the preferred choice compared to the traditional cement squeeze method that is both time consuming and exorbitant. Diagnostic services delivered by CT-conveyed fiber-optic distributed temperature sensing (DTS) that add real-time capabilities to monitor well integrity assess reservoir performance and visualize treatment efficiency. Using real-time diagnostic services, tubing integrity was confirmed, and the treatment was placed in the same run, helping eliminate the possibility of an undesired leakoff. After allowing the setting time, a successful pressure test or post-cleanout DTS (in case pressure test is not feasible) was used to establish the reliability of this method. The first attempt was made on Well A of the field; however, isolation was successful using m-OCP and conventional CT. Operation execution and production recovery took more time than planned because of the uncertainty concerning well integrity in the dual-string completion and lost circulation in the depleted reservoir, which affected the economic deliverability of the operation. The major challenges with Well B of the same type in the same field remain the same. Thus, as part of lessons learned from the previous intervention, diagnostic services were chosen for a real-time evaluation of the completion to review well integrity and accurately place the optimized treatment, thereby helping improve overall results in the most time-saving and lucrative manner. The successful isolation of the water-producing zone/perforations in the southeast Kuwait field using m-OCP and CT-assisted real-time DTS to review well integrity can be considered a best practice for addressing similar challenges globally.
Increasing water cut in oil-producing zones is a common issue, particularly in mature fields. Currently, most decisions are governed by economics, and incurring additional expenses, such as handling produced water, is undesirable. Depending upon the source of the water production, chemical isolation provides one effective solution to this issue. This paper describes a cost-effective coiled tubing (CT) intervention to implement permanent zonal isolation for water shutoff using an organically crosslinked polymer (OCP) sealant system and a modified organically crosslinked polymer (m-OCP) sealant system to provide a controlled, shallow penetration solution to the problem in a high-permeability, low-pressure reservoir. The traditional water shutoff method uses rig intervention for cement squeezes, which targeting shallow penetration can be time consuming and expensive in a high-permeability, low-pressure reservoir. The OCP sealant system is an organically crosslinked polymer that is thermally activated to effectively seal the targeted interval. The m-OCP sealant system combines particulates with the OCP sealant system to provide leakoff control to help promote shallow matrix penetration. The production logging tool (PLT) data for the candidate well indicated that the maximum water cut originated from the lower perforations and a single zone. CT intervention was selected to accurately place the OCP and m-OCP sealant systems and to permanently block water production by creating polymer barriers inside the reservoir and to remove any remaining OCP/m-OCP from the wellbore. OCP and m-OCP are resistant to acid and H2S and provide the required radial penetration. This system provides a predictable and controlled set time (as shown by laboratory testing). Because this system does not develop compressive strength, a simplified cleanout with a jetting nozzle is required to wash it from the well. After completing the zonal isolation with the OCP sealant system, the pressure test for the zone indicated a good seal. An electric submersible pump (ESP) was run on the completion string, and initial test results showed that the water cut was reduced from 97 to 75%, and oil production increased from 175 to 300 bpd. Increased production will recover all intervention and chemical costs within 20 days. The polymer sealant system with the customized intervention solution successfully reduced the water cut for this west Kuwait field. The same approach can be applied to other similar fields worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.