At least five RNA polymerases (Pol I to Pol V) are known to exist in plant cells. Pol IV produces short transcripts that are converted into double-stranded RNAs by RNA-dependent RNA polymerase 2 (RDR2) and processed into 24-nucleotide (nt) small interfering RNAs (siRNAs) by DICER-LIKE 3 (DCL3). These siRNAs direct ARGONAUTE 4 (AGO4) or AGO6 to sites of Pol V transcription and recruit DNA methyltransferases to initiate RNAdirected DNA methylation (RdDM) (reviewed in Cuerda-Gil and Slotkin, 2016). Information about Pol IV's role in plant reproductive development is limited, in part due to the lack of visible mutant phenotypes in Arabidopsis (Arabidopsis thaliana), although it was recently demonstrated that it is critical for the triploid block in Arabidopsis (Satyaki and Gehring, 2019). To examine the function of Pol IV in Capsella (Capsella rubella), a Brassicaceae species closely related to Arabidopsis, Wang et al. (2020) created a loss-of-function mutant of a major subunit of Capsella Pol IV, NRPD1, using CRISPR-Cas9. The mutant (named Cr nrpd1) exhibited obvious defects in female and male fertility. About 30% of the ovules of the homozygous Cr nrpd1 mutant remained unfertilized after pollination with wild-type pollen. When self-fertilized, the mutant produced seeds significantly reduced in size. These phenotypes resemble those of the recently reported nrpd1 mutant in Brassica rapa (Grover et al., 2019). In addition, pollen development in the homozygous Cr nrpd1 mutant was arrested at the post-meiotic, microspore stage (see figure). To understand the molecular basis of the pollen defect, the authors compared small RNA (sRNA) accumulation and transposable element (TE) expression profiles between wildtype and Cr nrpd1 microspores. The results showed that TE-derived 21-to 24-nt siRNAs are depleted in the Cr nrpd1 mutant, indicating that NRPD1, and thus Pol IV activity, is required for the biogenesis of these siRNAs. The extent of upregulation of TE expression positively correlates with the level of siRNAs associated with them, suggesting that the Pol IVdependent siRNAs silence TEs in wild-type microspores. Moreover, these phenomena were also observed in an Arabidopsis nrpd1 mutant (At nrpd1), suggesting that the function of Pol IV in siRNA biogenesis is conserved between Capsella and Arabidopsis.