Abstract. We investigate the sensitivity behaviour and the controllability for an aerobic wastewater model. The problem is formulated as a nonlinear dynamical system. Using the tools of nonsmooth analysis, we firstly analyse the positivity and dissipation of the model. On the other hand, through the Gronwell's inequality, we prove a sensitivity property of the model, quantified by the control parameters and initial conditions. This sensitivity leads to an error estimation between two trajectories. The strong controllability is investigated in a new setting: we assume that the recycle rate R, the residence time τ and the dissolved oxygen saturation concentration Cs are measurable time varying control functions. Hence, we reformulate the system as a nonlinear control problem. In this context and without linearising, we provide a strong controllability result with respect to the perturbations on initial conditions. As a consequence, we prove that an equilibrium point (when it exists) is locally controllable. Finally, we give some simulations illustrating our results.Résumé. Dans ce travail, nousétudions la sensibilité et la contrôlabilité forte d'un modèle aérobie de traitement des eaux usées. Le problème est formulé sous forme d'un système dynamique non linéaire. En utilisant les outils d'analyse non lisse, nous nous intéressons, dans un premier temps,à l'analyse de la positivité et de la dissipation du modèle, puisà travers l'inégalité de Gronwall, nous mettons enévidence la sensibilité du modèle par rapport aux paramètres, (susceptibles d'être des outils de contrôle), et les conditions initiales. Cette sensibilité conduità une estimation de l'erreur entre deux trajectoires. La contrôlabilité forte estétudiée dans un nouveau contexte: nous supposons que le taux de recyclage R, le temps de séjour τ et le taux de saturation d'oxygène dissous Cs sont des fonctions du temps mesurables. Dans cette optique, nous formulons le système comme un problème de contrôle non linéaire et nous fournissons un résultat de contrôlabilité forte, par rapport aux perturbations des conditions initiales. Par conséquent, nous démontrons qu'un point d'équilibre (s'il existe) est localement contrôlable. Finalement, nous donnons quelques simulations illustrant nos résultats. .