a b s t r a c tMany studies in literature have shown that energy-aware routing (EAR) can significantly reduce energy consumption for backbone networks. Also, as an arising concern in networking research area, the protocol-independent traffic redundancy elimination (RE) technique helps to reduce (a.k.a compress) traffic load on backbone network. Motivation from a formulation perspective, we first present an extended model of the classical multi-commodity flow problem with compressible flows. Moreover, our model is robust with fluctuation of traffic demand and compression rate. In details, we allow any set of a predefined size of traffic flows to deviate simultaneously from their nominal volumes or compression rates. As an applicable example, we use this model to combine redundancy elimination and energyaware routing to increase energy efficiency for a backbone network. Using this extra knowledge on the dynamics of the traffic pattern, we are able to significantly increase energy efficiency for the network. We formally define the problem and model it as a Mixed Integer Linear Program (MILP). We then propose an efficient heuristic algorithm that is suitable for large networks. Simulation results with real traffic traces on Abilene, Geant and Germany50 networks show that our approach allows for 16-28% extra energy savings with respect to the classical EAR model.