The feasibility of transferring hydrogen-implanted germanium to silicon with a reduced thermal budget is demonstrated. Germanium samples were implanted with a splitting dose of 5×1016 H2+ cm−2 at 180 keV and a two-step anneal was performed. Surface roughness and x-ray diffraction pattern measurements, combined with cross-sectional TEM analysis of hydrogen-implanted germanium samples were carried out in order to understand the exfoliation mechanism as a function of the thermal budget. It is shown that the first anneal performed at low temperature (≤150 °C for 22 h) enhances the nucleation of hydrogen platelets significantly. The second anneal is performed at 300 °C for 5 min and is shown to complete the exfoliation process by triggering the formation of extended platelets. Two key results are highlighted: (i) in a reduced thermal budget approach, the transfer of hydrogen-implanted germanium is found to follow a mechanism similar to the transfer of hydrogen-implanted InP and GaAs, (ii) such a low thermal budget (<300 °C) is found to be suitable for directly bonded heterogeneous substrates, such as germanium bonded to silicon, where different thermal expansion coefficients are involved.