Recently, titanate nanotubes (TNTs) have been receiving more attention and becoming an attractive candidate for use in several disciplines. With their promising results and outstanding performance, they bring added value to any field using them, such as green chemistry, engineering, and medicine. Their good biocompatibility, high resistance, and special physicochemical properties also provide a wide spectrum of advantages that could be of crucial importance for investment in different platforms, especially medical and pharmaceutical ones. Hydrothermal treatment is one of the most popular methods for TNT preparation because it is a simple, cost-effective, and environmentally friendly water-based procedure. It is also considered as a strong candidate for large-scale production intended for biomedical application because of its high yield and the special properties of the resulting nanotubes, especially their small diameters, which are more appropriate for drug delivery and long circulation. TNTs’ properties highly differ according to the preparation conditions, which would later affect their subsequent application field. The aim of this review is to discuss the factors that could possibly affect their synthesis and determine the transformations that could happen according to the variation of factors. To fulfil this aim, relevant scientific databases (Web of Science, Scopus, PubMed, etc.) were searched using the keywords titanate nanotubes, hydrothermal treatment, synthesis, temperature, time, alkaline medium, post treatment, acid washing, calcination, pharmaceutical applications, drug delivery, etc. The articles discussing TNTs preparation by hydrothermal synthesis were selected, and papers discussing other preparation methods were excluded; then, the results were evaluated based on a careful reading of the selected articles. This investigation and comprehensive review of different parameters could be the answer to several problems concerning establishing a producible method of TNTs production, and it might also help to optimize their characteristics and then extend their application limits to further domains that are not yet totally revealed, especially the pharmaceutical industry and drug delivery.