2004
DOI: 10.2143/ast.34.2.505146
|View full text |Cite
|
Sign up to set email alerts
|

Ruin Probabilities and Deficit for the Renewal Risk Model with Phase-type Interarrival Times

Abstract: This paper shows how the multivariate finite time ruin probability function, in a phase-type environment, inherits the phase-type structure and can be efficiently approximated with only one Laplace transform inversion.From a theoretical point of view, we also provide below a generalization of Thorin's formula (1971) for the double Laplace transform of the finite time ruin probability, by considering also the deficit at ruin; the model is that of a Sparre Andersen (renewal) risk process with phase-type interar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
5
0
3

Year Published

2005
2005
2016
2016

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(8 citation statements)
references
References 31 publications
0
5
0
3
Order By: Relevance
“…The simple model (1) with a renewal process for the arrivals of one-sided claims has been studied recently in a number of papers: a particular case was discussed by Dickson and Hipp [7], while Avram and Usábel [3] obtained general distribution results concerning the time to ruin and the undershoot using a method entirely different from that of [11] and the present paper. For earlier work, also see [1,Chapter 5,.…”
Section: Introductionmentioning
confidence: 93%
See 1 more Smart Citation
“…The simple model (1) with a renewal process for the arrivals of one-sided claims has been studied recently in a number of papers: a particular case was discussed by Dickson and Hipp [7], while Avram and Usábel [3] obtained general distribution results concerning the time to ruin and the undershoot using a method entirely different from that of [11] and the present paper. For earlier work, also see [1,Chapter 5,.…”
Section: Introductionmentioning
confidence: 93%
“…It is worth emphasizing that, for Theorem 1, the solutions to the Cramér-Lundberg equations with strictly negative real parts are required. The work of [3] and [2] involved special cases of the model (4) and used the solutions with positive real parts.…”
Section: Remarkmentioning
confidence: 99%
“…机微分方程 (2) 的解如下: 概率, 例如, Asmussen 和 Højgaard [1] , Avram 和 Usábel [2] , Cossette 等 [3] , Stanford 等 [4] , Thorin [5] , 等等; 同时, 大家对带有资本投资和大额索赔情形下风险模型的研究也很重视, 参 见文献 [6][7][8][9][10].…”
Section: 引言和模型unclassified
“…)£(-«■:)) 1 Λ ^ -e))To,i(s) ai -Xi ((1 -ε)ϊί{-εγ) 1 ^ w|î/0,i(s)|£, όπου για την δεύτερη ανίσωση χρησιμοποιούμε το γεγονός ότι fi i (-ε) > 1 για ε > 0. Ακόμη, από το γεγονός ότι1 + > (1ε)/ί(-ε) έπεται ότι ισχύει (ε + Χβηχ > ή ' -**• / λ \ 1/îlj Xi flε)/ί(-ε), και συνεπώς ε + λ* > λ* ( (1 -ε)/ί(-ε) ) Συνεπώς, η τελευταία εξίσωση γράφεται ισοδύναμα ως \%} (s) -uXinifi(s)\ > aiu\v0j{s)\ = \uaiki>0j(s)\, Vi e E,k=l,k^i απ' όπου'αποδεικνύεται το det Aq(0, 1)(s,u) φ 0 για s e (7ε με D? (s) <0.…”
unclassified
“…2=1όπου {JV(i)}~0) (Xifêi όπως ορίσθηκαν παραπάνω και (Τ(ί)})Τ0 μια στοχαστική διαδικα σία που εκφράζει το άθροισμα όλων των υπο-ζημιών Yj που εμφανίζονται πριν από το χρόνο t. Ακόμη, θεωρούμε ότι οι διαδικασίες {5(i)}g0 και {-Β(ί)1 …”
unclassified