Abstract:We report on ferrocenyl-styrylruthenium conjugates Fc-C 6 H 4 -CH=CH-Ru(CO)(PiPr 3 ) 2 (L) in which the electron density at the alkenylruthenium site is modified by the variation of the coligand L [L = Cl, acetylacetonate (acac), hexafluoroacetylacetonate (hfac), or dipivaloylmethane (dpvm); Fc = ferrocenyl]. Crystallographic studies on three derivatives provide snapshots of the conformational degrees of freedom for rotation around the vinyl-phenylene and phenylene-ferrocenyl linkages. All four complexes undergo two consecutive, reversible one-electron oxidations, the potentials of which depend on the ligand L. On the basis of IR spectroelectrochemistry results, the first oxidations of the less electron-rich chlorido and hfac complexes are biased strongly towards the ferrocenyl site. However, the radical cation of the acac complex exists as two equilibrating