This study focused on the extreme heavy rainstorm that occurred in Zhengzhou in July 2021; approximately 380 people were killed or missing as a result of this storm. To investigate the evolution behaviors of this rainstorm and take corresponding prevention measures, several methods and models were adopted, including cloud modeling, preliminary hazard analysis (PHA), fault tree analysis (FTA), bow-tie modeling, and chaos theory. The main reasons for this rainstorm can be divided into the following three aspects: force majeure, such as terrain and extreme weather conditions, issues with city construction, and insufficient emergency rescue. The secondary disasters caused by this rainstorm mainly include urban water logging, river flooding, and mountain torrents and landslides. The main causes of the subway line-5 accident that occurred can be described as follows: the location of the stabling yard was low, the relevant rules and regulations of the subway were not ideal, insufficient attention was given to the early warning information, and the emergency response mechanism was not ideal. Rainstorms result from the cross-coupling of faults in humans, objects, the environment, and management subsystems, and the evolution process shows an obvious butterfly effect. To prevent disasters caused by rainstorms, the following suggestions should be adopted: vigorously improve the risk awareness and emergency response capabilities of leading cadres, improve the overall level of urban disaster prevention and mitigation, reinforce the existing reservoirs in the city, strengthen the construction of sponge cities, and improve the capacity of urban disaster emergency rescue.