Background: Manganese is a toxic essential trace element and too high concentration instigates the neurodegenerative disease known as parkinsonism. Effects of manganese may lead to apoptosis. However, a detailed mechanism of manganese toxicity has not been fully elucidated. Previous published articles have highlighted the augmentation of KHSRP expression following Mn exposure. Objectives: In this work, the importance of KHSRP in Mn-induced toxicity was checked along with the impact of other known neurotoxicity inhibitors on KHSRP. Materials and Methods: KHSRP expression, pro and anti-inflammatory cytokines, chemokines, and pharmacological inhibitors (SAHA, Quercetin, and MCC950) were determined by exposing N2a cells to various MnCl 2 concentrations. ANOVA and Dunnett's test were used to decide on the significance. Results: MnCl 2 treatment led to the augmentation of the KHSPR mRNA expression and protein increase in N2a cell line. The MnCl 2 treatment of N2a cells also showed an elevated liberation of IL-6, TNF-α, MCP-1, and IL-1β. Pharmacological agents like quercetin inhibiting PI3K, MAPK, and WNT pathways, MCC950 blocking NLRP3 pathways, and SAHA showed a decrease in KHSRP expression post Mn treatment. With the inhibition of KHSRP, a decline in the release of IL-1β, IL-6, MCP-1, and TNF-α was also observed. Conclusion: These results suggested that MnCl 2 treatment of N2a cells induce the expression of KHSRP via the PI3K-or NLRP3 pathway. Furthermore, this elevated expression of KHSRP is responsible for an increment in the liberation of pro-inflammatory markers in N2a cells. More exploration is needed to throw light on the pathway driving the KHSRP.