In this paper, the effect of Magneto Hydro-Dynamics (MHD) on a polymer chain in the micro channel is studied by employing the Dissipative Particle Dynamics simulation (DPD) method. First, in a simple symmetric micro-channel, the results are evaluated and validated for different values of Hartmann (Ha) Number. The difference between the simulation and analytical solution is below 10%. Then, two types of polymer chain including short and long polymer chain are examined in the channel and the effective parameters such as Ha number, the harmony bond coefficient or spring constant (K), and the length of the polymer chain (N) are studied in the MHD flow. It is shown that by increasing harmony bond constant to 10 times with Ha = 20, the reduction of about 80% in radius of gyration squared, and half in polymer length compared to Ha = 1 would occur for both test cases. For short and long length of polymer, proper transfer of a polymer chain through MHD particles flow is observed with less perturbations (80%) and faster polymer transfer in the symmetric micro-channel.