Nitrification, a key process in the global nitrogen cycle that generates nitrate through microbial activity, may enhance losses of fertilizer nitrogen by leaching and denitrification. Certain plants can suppress soil-nitrification by releasing inhibitors from roots, a phenomenon termed biological nitrification inhibition (BNI). Here, we report the discovery of an effective nitrification inhibitor in the root-exudates of the tropical forage grass Brachiaria humidicola (Rendle) Schweick. Named ''brachialactone,'' this inhibitor is a recently discovered cyclic diterpene with a unique 5-8-5-membered ring system and a ␥-lactone ring. It contributed 60 -90% of the inhibitory activity released from the roots of this tropical grass. Unlike nitrapyrin (a synthetic nitrification inhibitor), which affects only the ammonia monooxygenase (AMO) pathway, brachialactone appears to block both AMO and hydroxylamine oxidoreductase enzymatic pathways in Nitrosomonas. global warming ͉ nitrogen pollution ͉ nitrous oxide emissions ͉ root exudation ͉ climate change M ost modern agricultural systems are based on large inputs of inorganic nitrogen (N), with ammonium (NH 4 ϩ ) being the primary N source (1, 2). Also, current crop management practices result in the development of highly nitrifying soil environments (3, 4). Nitrification results in the transformation of the relatively immobile NH 4 ϩ to highly mobile nitrate (NO 3 Ϫ ), making inorganic N susceptible to losses through leaching of NO 3 Ϫ and/or gaseous N emissions, potentially initiating a cascade of environmental and health problems (1, 2, 5, 6). Nitrous oxide (N 2 O) is one of the three major biogenic greenhouse gases contributing to global warming, produced primarily from denitrification processes in agricultural systems (5, 7). Also, assimilation of NO 3 Ϫ by plants can result in further N 2 O emissions directly from plant canopies (8). The low agronomic N-use efficiency (NUE) found in many agricultural systems is largely the result of N losses associated with nitrification (i.e., N losses from NO 3 Ϫ leaching and denitrification) (9-11). Most plants have the ability to assimilate both NH 4 ϩ and NO 3 Ϫ (12); therefore, nitrification does not need to be a dominant process in the N cycle for efficient N use.Nitrification is low in some forest and grassland soils (13-17). Since the early 1960s, some tropical grasses have been suspected of having the capacity to inhibit nitrification (18-21). However, this concept remained controversial due to the lack of direct evidence showing such inhibitory effects or the identification of specific inhibitors (22).We adopted a very sensitive bioassay using a recombinant luminescent Nitrosomonas europaea to detect biological nitrification inhibition (BNI) in plant-soil systems with the inhibitory activity of roots expressed in allylthiourea units (ATU) (23). Using this methodology, we were able to show that certain plants release nitrification inhibitors from their roots (23-26). Such BNI capacity appears to be relatively widespread among...