2014
DOI: 10.1007/s10857-014-9288-1
|View full text |Cite
|
Sign up to set email alerts
|

Secondary teachers’ conception of various forms of complex numbers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
9
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 22 publications
(12 citation statements)
references
References 7 publications
1
9
0
2
Order By: Relevance
“…On the Final, few students (9.5%, N=21) made trigonometry related errors, how- ever, the geometry associated with i − 1 may be simpler for students than √ 3 − i. This may be similar to other studies which showed in-service secondary mathematics teachers also exhibited a lack of flexibility between forms of complex numbers despite extensive instruction [8].…”
Section: Changing and Selecting Formssupporting
confidence: 76%
See 2 more Smart Citations
“…On the Final, few students (9.5%, N=21) made trigonometry related errors, how- ever, the geometry associated with i − 1 may be simpler for students than √ 3 − i. This may be similar to other studies which showed in-service secondary mathematics teachers also exhibited a lack of flexibility between forms of complex numbers despite extensive instruction [8].…”
Section: Changing and Selecting Formssupporting
confidence: 76%
“…Previous empirical studies explore secondary students' [1], undergraduate students' [2][3][4][5], prospective and inservice secondary teachers' [6][7][8], and experts' [9] algebraic and geometric understanding of complex numbers in mathematics and engineering contexts. Some of these studies cover calculational aspects of complex number fluency we discuss including complex algebra [2] and changing between [8], and appropriately selecting [4], forms of complex numbers.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…This is in line with the findings of Fujita et al (2017) that expressing geometric representations is seen as a process of productive reasoning that impacts on the subject's thinking. In addition, this representation can be used as a reference for long-term research, as recommended by (Karakok et al 2014). Likewise with the opinion of Dogan-dunlap (2010) that geometrical representation helps the subject to consider various representational aspects of a flexible concept.…”
Section: Discussionmentioning
confidence: 96%
“…Las evidencias apuntan, entre otras, a un fuerte trabajo desde lo aritmético-algebraico y uno casi nulo desde lo geométrico-vectorial (Danenhower, 2000;Panoura et al, 2006;Aznar et al, 2010;Distéfano et al, 2012). En lo específico, las investigaciones han reportado que los aprendices no tienen construido un significado geométrico de número complejo (Distéfano et al, 2012), reflejando una falta de flexibilidad en el uso de sus diferentes representaciones (Panoura et al, 2006;Aznar et al, 2012;Karakok et al, 2015;Smith et al, 2015) y, por tanto, una comprensión fragmentada de este. Y es que lograr la comprensión del sistema de los números complejos (SNC) no es una tarea fácil, pues dados los elementos que lo definen, requiere para su comprensión que los aprendices alcancen niveles superiores de abstracción y contrapongan ideas arraigadas sobre conceptos que han construido previamente en el sistema de los números reales.…”
Section: Introductionunclassified