Background and Objective
Cloud computing plays a vital role in big data science with its scalable and cost-efficient architecture. Largescale genome data storage and computations would benefit from using these latest cloud computing infrastructures, to save cost and speedup discoveries. However, due to the privacy and security concerns, data owners are often disinclined to put sensitive data in a public cloud environment without enforcing some protective measures. An ideal solution is to develop secure genome database that supports encrypted data deposition and query.
Methods
Nevertheless, it is a challenging task to make such a system fast and scalable enough to handle real-world demands providing data security as well. In this paper, we propose a novel, secure mechanism to support secure count queries on an open source graph database (Neo4j) and evaluated the performance on a realworld dataset of around 735,317 Single Nucleotide Polymorphisms (SNPs). In particular, we propose a new tree indexing method that offers constant time complexity (proportion to the tree depth), which was the bottleneck of existing approaches.
Results
The proposed method significantly improves the runtime of query execution compared to the existing techniques. It takes less than one minute to execute an arbitrary count query on a dataset of 212 GB, while the best-known algorithm takes around 7 minutes.
Conclusions
The outlined framework and experimental results show the applicability of utilizing graph database for securely storing large-scale genome data in untrusted environment. Furthermore, the crypto-system and security assumptions underlined are much suitable for such use cases which be generalized in future work.