We present results of biological experiments which indicate that the subpopulation of Epstein-Barr virus strain P3HR-1 with heterogeneous (het) DNA consists of self-contained replicons which multiply alongside, but independently of, Epstein-Barr virus strain HR-1 containing standard DNA. When a population of HR-1 virions containing het DNA was introduced into X50-7 cells, the input heterogeneous DNA increased in abundance, as did the DNA of the endogenous virus of X50-7 cells. The input standard HR-1 viral DNA, however, was not amplified. When parental HR-1 cells or a cellular subclone containing het DNA were grown for several weeks in the presence of human serum with neutralizing antibody, the het DNA was lost from the culture; standard HR-1 DNA, however, was not affected by antiserum. Furthermore, virions containing het DNA could be serially propagated through cellular subclones of HR-1 cells which lack het DNA. After each serial passage, cells which acquired het DNA released virions with the ability to induce early antigens in Raji cells. These experiments define a novel in vitro life cycle of an Epstein-Barr virus variant which is maintained, not vertically by partitioning to daughter cells in cell division, but horizontally by cell-to-cell spread.