Tons of anthropological activities contribute daily to the massive amount of lignocellulosic wastes produced annually. Unfortunately, their full potential usually is underutilized, and most of the biomass ends up in landfills. Lignocellulolytic enzymes are vital and central to developing an economical, environmentally friendly, and sustainable biological method for pre-treatment and degradation of lignocellulosic biomass which can lead to the release of essential end products such as enzymes, organic acids, chemicals, feed, and biofuel. Sustainable degradation of lignocellulosic biomass via hydrolysis is achievable by lignocellulolytic enzymes, which can be used in various applications, including but not limited to biofuel production, the textile industry, waste treatment, the food and drink industry, personal care industry, health and pharmaceutical industries. Nevertheless, for this to materialize, feasible steps to overcome the high cost of pre-treatment and lower operational costs such as handling, storage, and transportation of lignocellulose waste need to be deployed. Insight on lignocellulolytic enzymes and how they can be exploited industrially will help develop novel processes that will reduce cost and improve the adoption of biomass, which is more advantageous. This review focuses on lignocellulases, their use in the sustainable conversion of waste biomass to produce valued-end products, and challenges impeding their adoption.