The high surface‐to‐volume ratio and desirable chemical, thermal, and catalytic properties of nanomaterials have made them promising electrode materials for sensing applications. As such, different nanomaterials and their nanocomposite‐based individual and/or simultaneous detection of dihydroxybenzene (DHB) have been reported in recent years. Due to the low degradation rate and high toxicity of DHB isomers, the development of innovative and robust sensors for their simultaneous detection has received considerable attention. In this review, applications of different nanomaterials (with the exception of carbon nanotubes, graphene, and their derivatives) for individual and/or simultaneous detection of DHB are briefly discussed. The focal point is on the characteristic features of the modified electrodes that improve their electrocatalytic activities toward DHB. Real sample analysis and electrolyte media are also summarized. This review includes studies published from 2011 to 2020.