The grafting of titania on SBA-15 followed by its phosphation was presented to prepare a mesoporous Lewis−Brønsted bifunctional solid acid catalyst for the tandem conversion of glucose via fructose to 5-hydroxymethylfurfural (HMF). Titania was dispersed on SBA-15 as an amorphous surface layer containing abundant coordinatively unsaturated tetrahedral Ti ions, which was reactive and readily transformed upon phosphation into a new titanium phosphate phase with the chemical formula identified as Ti 2 O 3 (H 2 PO 4 ) 2 •2H 2 O. The ordered mesoporous structure was well maintained after three modification cycles, affording a desirable surface area of over 300 m 2 /g. The SBA-15supported titanium phosphate layer affords higher overall acidity and Brønsted to Lewis acid ratio, compared with the conventional post-phosphated bulk anatase titania. The tetrahedral Ti ions and the adjacent protonated phosphate groups on the titanium phosphate layer could form Lewis−Brønsted acid pairs at molecular level proximity, which largely enhanced the selective tandem catalysis for glucose conversion via fructose to HMF. An optimized HMF yield of 71% was achieved at 160 °C in a water−methyltetrahydrofuran biphasic system over the SBA-15-supported titanium phosphate catalyst. The catalyst exhibited good hydrothermal stability with a rather limited silicon and phosphate leaching, and no distinct pore collapse or performance loss over three sequential reaction runs.