Dynamic economic dispatch (DED) that considers valve-point effects is a complex nonconvex and nonsmooth optimization problem in power systems. Over the past few decades, multiple approaches have been developed to solve this problem. In this paper, an adaptive differential evolution based on simulated annealing algorithm is proposed to solve the DED problem with valve-point effects. Simulated annealing (SA) algorithm is employed to carry out an adaptive selection mechanism in which the mutation operators of differential evolution (DE) are selected adaptively based on their historical performance. A mutation operator pool consisting of five operators is built to make each operator show its strength at different stages of the evolutionary process. Moreover, a heuristic strategy is introduced to transform infeasible solutions towards feasible ones to enhance the convergence rate of the proposed algorithm. The effectiveness of the proposed methods is demonstrated first on 10 popular benchmark functions with 100 dimensions, in comparison with the classic DE and five variants. Then, it is used to solve four DED problems with 10, 15, 30, and 54 units, which consider the valve-point effects, transmission loss, and prohibited operating zones. The simulation results are compared with those of state-of-the-art algorithms to clarify the significance of the proposed method and verify its performance. Three systems with 100-500 generators are also tested to confirm the advantages of the proposed method on large-scale DED problem.