Let SH be a sub-fractional Brownian motion with index 12<H<1. In this paper, we consider the linear self-interacting diffusion driven by SH, which is the solution to the equationdXtH=dStH−θ(∫0tXtH−XsHds)dt+νdt,X0H=0,where θ < 0 and ν∈R are two parameters. Such process XH is called self-repelling and it is an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303 (1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.